Characterizations of Lojasiewicz inequalities and applications

نویسنده

  • Jérôme BOLTE
چکیده

The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the KurdykaLojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by −∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the KurdykaLojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines —a concept linked to the location of the less steepest points at the level sets of f— and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the KurdykaLojasiewicz inequality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizations of ÃLojasiewicz inequalities :

The classical à Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative chara...

متن کامل

Characterizations of Lojasiewicz inequalities: Subgradient flows, talweg, convexity

The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative charact...

متن کامل

Multivariate Polynomial Inequalities via Pluripotential Theory and Subanalytic Geometry Methods

In this paper, we give a state-of-the-art survey of investigations concerning multivariate polynomial inequalities. A satisfactory theory of such inequalities has been developed due to applications of both the Gabrielov-Hironaka-Ã Lojasiewicz subanalytic geometry and pluripotential methods based on the complex Monge-Ampère operator. Such an approach permits one to study various inequalities for...

متن کامل

New Jensen and Ostrowski Type Inequalities for General Lebesgue Integral with Applications

Some new inequalities related to Jensen and Ostrowski inequalities for general Lebesgue integral are obtained. Applications for $f$-divergence measure are provided as well.

متن کامل

Hadamard Well-posedness for a Family of Mixed Variational Inequalities and Inclusion Problems‎

In this paper, the concepts of well-posednesses and Hadamard well-posedness for a family of mixed variational inequalities are studied. Also, some metric characterizations of them are presented and some relations between well-posedness and Hadamard well-posedness of a family of mixed variational inequalities is studied. Finally, a relation between well-posedness for the family of mixed variatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008